Pompeiu problem
In mathematics, the Pompeiu problem is a conjecture in integral geometry, named for Dimitrie Pompeiu, who posed the problem in 1929, as follows. Suppose f is a nonzero continuous function defined on a Euclidean space, and K is a simply connected Lipschitz domain, so that the integral of f vanishes on every congruent copy of K. Then the domain is a ball.
A special case is Schiffer's conjecture.
References
- Pompeiu, Dimitrie (1929), "Sur certains systèmes d'équations linéaires et sur une propriété intégrale des fonctions de plusieurs variables", Comptes Rendus de l'Académie des Sciences Paris Série I. Mathématique 188: 1138 –1139
- Ciatti, Paolo (2008), Topics in mathematical analysis, Series on analysis, applications and computation, 3, World Scientific, ISBN 9812811052
External links
‹The stub template below has been proposed for renaming to . See stub types for deletion to help reach a consensus on what to do.
Feel free to edit the template, but the template must not be blanked, and this notice must not be removed, until the discussion is closed. For more information, read the guide to deletion.›